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Abstract

The steady laminar boundary layer flow of water along a vertical stationary uniform flux plate is studied. The

working fluid is water whose density–temperature relationship is nonlinear at low temperatures and viscosity and

thermal conductivity are functions of temperature. The results are obtained with the numerical solution of the

boundary layer equations and cover the temperature range between 40 and 0 �C taking into account the temperature

dependence of l, k and q. Both upward and downward flow is considered. The variation of l, k and q with temperature

has a strong influence on the results.

� 2002 Elsevier Science Ltd. All rights reserved.
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1. Introduction

The earliest known theoretical treatment of free

convection along a vertical uniform flux plate is the

analysis of Sparrow and Gregg [17]. There are numerous

subsequent similar investigations in the literature. The

reader can find many relevant works in a very recent

paper by Aydin and Guessous [1]. In the present paper

we focus on water whose density–temperature relation-

ship is linear at high temperatures and nonlinear at low

temperatures. The density of pure water is maximum at

3.98 �C. The density increases as the temperature de-

creases approaching 3.98 �C, while the density decreases

as the temperature decreases from 3.98 to 0 �C (see Fig.

1). The density profile is approximately parabolic in the

vicinity of 3.98 �C and there are infinite couples of

temperatures near the density extremum with equal

densities. For example, the density at 0 �C is equal to

that of 8.13 �C. Some works relevant to water at high

temperatures, where the density–temperature relation-

ship is linear, are those by Goldstein and Eckert [6];

Qureshi and Gebhart [14]; King and Reible [8]; Inagaki

and Komori [7] and Pittman et al. [13].

Except of the above mentioned studies there are some

papers concerning water free convection in low tem-

perature range where the density–temperature relation-

ship is nonlinear. Soundalgekar [16] used an integral

method to study water free convection over a vertical

plate with variable temperature. The ambient water was

4 �C. Gebhart and Mollendorf [3] analyzed the problem

of laminar free convection of water over a heated ver-

tical plate and gave the appropriate conditions for sim-

ilarity solution for the uniform heat flux case. The same

problem was analyzed by Qureshi and Gebhart [15] and

similarity results were produced only when the ambient

density coincides with density extremum temperature.

Gebhart et al. [4] developed a purturbation analysis to

extend the range of the calculations beyond the density

extremum temperature and produced results for the

adiabatic and uniform heat flux plate. These results are

valid only when the ambient temperature is near the

maximum density temperature. Pantokratoras [10] pre-

sented results for the uniform flux plate in the temper-

ature range between 20 and 0 �C taking into account the
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water nonlinearity at low temperatures. The results of all

the above works, concerning the nonlinear region, are

valid only for small temperature differences between the

plate and the ambient water (about 3 �C).
All the above mentioned works, either at the linear or

the nonlinear region, assume constant dynamic viscosity

and thermal conductivity both taken at ambient or film

temperature. However, these quantities are also func-

tions of temperature. In the temperature range between

40 and 0 �C the water kinematic viscosity varies from

0.005827 to 0.017911 cm2/s and the Prandtl number

varies from 3.83 to 13.18 [9]. The objective of the present

paper is to present results for laminar free convection of

water along a vertical uniform flux plate in the temper-

ature range between 40 and 0 �C, taking into account the

temperature dependence of all water physical properties

(l, k and q).
The boundary layer equations with variable fluid

properties were solved directly, without any transfor-

mation, by a method described by Patankar [12]. The

International Equation of State for Seawater [2] has

been used for the calculation of density from tempera-

ture. For the calculation of dynamic viscosity and

thermal conductivity the formulae given by Kukulka

et al. [9] have been used. The finite difference method is

used with primitive coordinates x, y and a space

marching procedure is used in x direction with an ex-

panding grid. The accuracy of the method was tested

comparing the results with those of the classical free

convection problem (constant viscosity and thermal

conductivity and linear relationship between density and

temperature). The comparison was satisfactory. More

information about the equations and the solution pro-

cedure may be found in Pantokratoras [11]. The

boundary conditions were as follows:

at y ¼ 0: u ¼ v ¼ 0; �k
oT
oy

� �
¼ q ð1Þ

as y ! 1: u ¼ 0; T ¼ Ta ð2Þ

where q is the heat flux at the plate and Ta is the ambient

water temperature.

2. Results and discussion

In the similarity method commonly used in free

convection over vertical surfaces, the following func-

tions and variables are used. The nondimensional stream

function f ðnÞ, the similarity variable n, the local Grashof

Grx and the nondimensional velocity f 0. These quantities

are well known and can be found in the literature (see

for example [11]). The most important quantities for this

problem are the wall heat transfer and the wall shear

stress defined as

Nomenclature

f dimensionless stream function

g gravitational acceleration

Grx local Grashof number, Grx ¼
gx3

m2
qa � qo

qak thermal conductivity

Nux local Nusselt number, Nux ¼
qx

kðTo � TaÞPr Prandtl number, Pr ¼ m=a
q surface heat flux

Ra� modified Rayleigh number, Ra� ¼ gbqx4=
mak

T water temperature

u vertical velocity

v horizontal velocity

x vertical coordinate

y horizontal coordinate

Greek symbols

a thermal diffusivity

b thermal expansion coefficient of water

n similarity variable, n ¼ y
x

Grx
4

� �1=4
l dynamic viscosity

v kinematic viscosity

q water density

h dimensionless temperature, h ¼ T � Ta
To � Ta

Subscripts

a ambient

o plate

f film

Fig. 1. Variation of water density in the 10–0 �C region.
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h0ð0Þ ¼ x
To � Ta

Grx
4

� ��1=4
oT
oy

� �
y¼0

ð3Þ

f 00ð0Þ ¼ qox
2

lo

ffiffiffi
2

p ½Grx��3=4 ou
oy

� �
y¼0

ð4Þ

where To and Ta are the plate and ambient temperatures

and qo and lo are the water density and dynamic vis-

cosity at the wall.

It is known from the literature that in the classical free

convection with uniform surface flux the plate tempera-

ture increases along the plate according to the law

DT ¼ To � Ta ¼ Nxn ð5Þ

where the similarity exponent n is equal to 1=5. In the

present work results were produced for four ambient

water temperatures (Ta ¼ 3:98, 10, 20 and 30 �C). In

each numerical experiment the plate temperature varied

from the ambient temperature to 40 �C (DT ¼ 36, 30, 20

and 10 �C). In addition, except of the usual problem of

the upward moving fluid, results have been produced for

downward flow. This can be achieved by cooling the

plate instead of heating it (q was taken negative in Eq.

(1)). In this case the plate temperature decreases along

the plate. For the downward flow results were produced

again for four ambient water temperatures (Ta ¼ 40, 30,

20 and 10 �C). In each numerical experiment now the

plate temperature varied from the ambient temperature

to 0 �C (DT ¼ 40, 30, 20 and 10 �C). The reason for

taking as lowest ambient temperature 3.98 �C for the

upward flow and 0 �C as final temperature for the

downward flow is the following. The density of water at

3.98 �C is maximum and all temperatures greater than

3.98 �C correspond to densities lower than that of 3.98

�C, so we have pure upward flow at this temperature

region. The water density at 0 �C and all densities at

intermediate temperatures are greater than that of the

ambient temperatures (40, 30, 20 and 10 �C) and thus

the fluid sinks.

In each numerical experiment the local Grashof and

the local Prandtl number have been considered variable

along the flow. The solution procedure starts from the

plate leading edge and marches in the vertical direction.

At every downstream position we calculated the plate

temperature and then the local Grashof and the local

Prandtl number have been calculated at film tempera-

ture (To þ Ta)/2 which also changes along the plate. The

correspondence between the Prandtl number and the

water temperature is as follows:

In Fig. 2 the wall heat transfer �h0ð0Þ is shown as

function of the film Prandtl number Prf for different

ambient temperatures. The broken line with dots cor-

responds to heat transfer of the classical problem of free

convection along a uniform flux vertical plate of a fluid

with constant properties and linear density–temperature

relationship. Values of �h0ð0Þ for the classical problem

were taken from Gebhart [5]. In his work there is a table

with results concerning the transport quantities of free

convection adjacent to vertical isothermal and adiabatic

surfaces. This table was prepared by Krishnamurthy.

The solid lines correspond to upward flow and the da-

shed lines to downward flow. Arrows show increasing

DT . From this figure it is seen that as DT increases along

the plate the wall heat transfer �h0ð0Þ decreases in the

upward flow and increases in the downward flow. It is

remarkable that as we move from the nonlinear to linear

region the curves approach the constant properties line.

In Fig. 3 the wall shear stress f 00(0) is shown for the

same conditions of Fig. 2. Now the broken line with dots

corresponds to wall shear stress of the classical problem

of free convection along a uniform flux vertical plate of a

fluid with constant properties. This line has been pro-

duced with values of f 00(0) taken again from Gebhart [5].

The solid lines correspond to upward flow and the da-

shed lines to downward flow. Arrows show increasing

DT . From this figure it is seen that as DT increases the

wall shear stress increases in the upward flow and de-

creases in the downward flow except of the case of

downward flow between 10 and 0 �C. For this case the

wall shear stress increases as DT increases in contrary to

the other three cases of downward flow. It is should be

noted that in the case of Ta ¼ 3:98 �C (upward flow) the

wall shear stress lies below the constant properties line

for small DT and above this line for large DT .
Another interesting quantity calculated in the present

work is the value of the exponent n in Eq. (5). In the

T (�C) 40 30 20 10 0

Pr 3.83 5.41 6.99 9.31 13.18

Fig. 2. Wall heat transfer as function of film Pr number for

different ambient temperatures. Broken line with dots corre-

sponds to constant properties. Solid lines correspond to upward

flow and dashed lines to downward flow. Arrows show in-

creasing DT .
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classical problem with constant properties and linear

density–temperature relationship the value of n is 0.20.

In the nonlinear region the value of n departs from the

above value. In the following table the calculated values

of n for different temperature ranges are given.

From the above table it is seen that the exponent n is

lower than 0.20 in the upward flow and higher than 0.20

in the downward flow. The biggest deviation from the

classical value occurs at the strongly nonlinear region

between 10 and 0 �C.
Another interesting quantity in heat transfer prob-

lems is the local Nusselt number defined as

Nux ¼
qx

kfðTo � TaÞ
ð6Þ

where kf is the water thermal conductivity at film tem-

perature. The most recent correlation of Nusselt number

for free convection along a vertical plate with constant

heat flux is that by Aydin and Guessous [1]. They pro-

posed the following equation which correlates the local

Nusselt number, Prandtl and the modified Rayleigh

number

Nux ¼ C1

Ra�Pr
0:67þ Pr

� �m

ð7Þ

where the exponent m is again 0.20 and the constant

C1 ¼ 0:630. These values are valid for fluids with linear

density–temperature relationship. In the present work

the local Nusselt number has been calculated in each

numerical experiment from Eq. (6) and the values have

been compared with the results of Eq. (7). It should be

noted here that the local modified Rayleigh number and

the local Prandtl number, used in Eq. (7), have been

considered again variable along the flow. At every

downstream position we calculated the plate tempera-

ture and then the two numbers have been calculated at

film temperature. The differences between our results

and those by Aydin and Guessous [1] varied from 2%

(temperature range 40 ) 0, downward flow) to 17%

(temperature range 3:98 ) 40, upward flow). These

differences are reasonable because Eq. (7) concerns fluids

with linear density-temperature relationship. After that

we tried to adjust the exponent m and the constant C1 to

our results. In the following table the calculated values

of m and C1 for different temperature ranges are given.

From the above table it is seen that the exponent m is

slightly lower than 0.20 in the upward flow and slightly

higher than 0.20 in the downward flow. The constant C1

and the exponent m approach the values given by Aydin

and Guessous [1] as we move from the nonlinear region

to linear region. The differences between our results and

those by Eq. (7) with the above modified C1 and m

values are below 1% for all temperature ranges.

References

[1] O. Aydin, L. Guessous, Fundamental correlations for

laminar and turbulent free convection from a uniformly

heated vertical plate, Int. J. Heat Mass Transfer 44 (2001)

4605–4611.

[2] N.P. Fofonoff, Physical properties of seawater: A new

salinity scale and equation of state for seawater, J.

Geophys. Res. 90 (C2) (1985) 3332–3342.

[3] B. Gebhart, J. Mollendorf, Buoyancy-induced flows in

water under conditions in which density extrema may arise,

J. Fluid Mech. 89 (1978) 673–707.

[4] B. Gebhart, V. Carey, J. Mollendorf, Buoyancy induced

flows due to energy sources in cold quiescent pure and

saline water, Chem. Eng. Commun. 3 (1979) 555–575.

Upward flow

Temperature

range �C
3:98 ) 40 10 ) 40 20 ) 40 30 ) 40

n 0.1649 0.1766 0.1890 0.2000

Downward flow

Temperature

range �C
40 ) 0 30 ) 0 20 ) 0 10 ) 0

n 0.2281 0.2253 0.2203 0.2407

Upward flow

Temperature

range �C
3:98 ) 40 10 ) 40 20 ) 40 30 ) 40

m 0.2000 0.1983 0.1984 0.1980

C1 0.542 0.599 0.621 0.637

Downward flow

Temperature

range �C
40 ) 0 30 ) 0 20 ) 0 10 ) 0

m 0.2006 0.2016 0.2039 0.2139

C1 0.604 0.591 0.556 0.484

Fig. 3. Wall shear stress as function of film Pr number for

different ambient temperatures. Broken line with dots corre-

sponds to constant properties. Solid lines correspond to upward

flow and dashed lines to downward flow. Arrows show in-

creasing DT .

728 A. Pantokratoras / International Journal of Heat and Mass Transfer 46 (2003) 725–729



[5] B. Gebhart, Similarity solutions for laminar external

boundary region flows, natural convection, fundamentals

and applications, Hemisphere Publishing Corporation,

Washington, 1985.

[6] R.J. Goldstein, E.R.G. Eckert, The steady and transient

free convection boundary layer on uniformly heated

vertical plate, Int. J. Heat Mass Transfer 1 (1960) 208–218.

[7] T. Inagaki, K. Komori, Heat transfer and fluid flow of

natural convection along a vertical flat plate in the

transition region: experimental analysis of the wall tem-

perature field, Int. J. Heat Mass Transfer 38 (1995) 3485–

3495.

[8] J. King, D. Reible, Laminar natural convection heat

transfer from inclined surfaces, Int. J. Heat Mass Transfer

34 (1991) 1901–1904.

[9] D.J. Kukulka, B. Gebhart, J.C. Mollendorf, Thermody-

namic and transport properties of pure and saline water,

Adv. Heat Transfer 18 (1987) 325–363.

[10] A. Pantokratoras, Laminar free convection of pure and

saline water along a heated vertical plate, ASME J. Heat

Transfer 121 (3) (1999) 719–722.

[11] A. Pantokratoras, Laminar free-convection over a vertical

isothermal plate with uniform blowing or suction in water

with variable physical properties, Int. J. Heat Mass

Transfer 45 (2002) 963–977.

[12] S.W. Patankar, Numerical Heat Transfer and Fluid Flow,

McGraw-Hill Book Company, New York, 1980.

[13] J.F.T. Pittman, J.F. Richardson, C.P. Sherrard, An exper-

imental study of heat transfer by laminar natural convec-

tion between an electrically-heated vertical plate and both

Newtonian and non-Newtonian fluids, Int. J. Heat Mass

Transfer 42 (1999) 657–671.

[14] Z. Qureshi, B. Gebhart, Transition and transport in

buoyancy driven flow in water adjacent to a vertical

uniform flux surface, Int. J. Heat Mass Transfer 21 (1978)

1467–1478.

[15] Z. Qureshi, B. Gebhart, Vertical natural convection with

the uniform flux condition in pure and saline water at the

density extremum, in: Proceedings of the Sixth Interna-

tional Heat Transfer Conference, Toronto, 1978.

[16] V.M. Soundalgekar, Laminar free convection flow of water

at 4 �C from a vertical plate with variable wall temperature,

Chem. Eng. Sci. 28 (1973) 307–309.

[17] E.M. Sparrow, J.L. Gregg, Laminar free convection from a

vertical plate with uniform surface heat flux, Trans. ASME

78 (1956) 435–440.

A. Pantokratoras / International Journal of Heat and Mass Transfer 46 (2003) 725–729 729


	Laminar free-convection in water with variable physical properties adjacent to a vertical plate with uniform heat flux
	Introduction
	Results and discussion
	References


